Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.771
Filtrar
1.
Sheng Li Xue Bao ; 75(3): 451-464, 2023 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-37340653

RESUMO

Serum and glucocorticoid-regulated kinase 1 (SGK1) plays an important role in the physiological processes of hormone release, neuronal excitation and cell proliferation. SGK1 also participates in the pathophysiological processes of inflammation and apoptosis in the central nervous system (CNS). Increasing evidence demonstrates that SGK1 may serve as a target of the intervention of neurodegenerative diseases. In this article, we summarize the recent progress on the role and molecular mechanisms of SGK1 in the regulation of the function of the CNS. We also discuss the potential of newly discovered SGK1 inhibitors in the treatment of CNS diseases.


Assuntos
Doenças do Sistema Nervoso Central , Proteínas Serina-Treonina Quinases , Humanos , Proliferação de Células , Doenças do Sistema Nervoso Central/tratamento farmacológico , Inflamação , Proteínas Serina-Treonina Quinases/fisiologia
2.
Cancer Lett ; 565: 216207, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141984

RESUMO

LIMK2, a serine-specific kinase, was discovered as an actin dynamics regulating kinase. Emerging studies have shown its pivotal role in numerous human malignancies and neurodevelopmental disorder. Inducible knockdown of LIMK2 fully reverses tumorigenesis, underscoring its potential as a clinical target. However, the molecular mechanisms leading to its upregulation and its deregulated activity in various diseases largely remain unknown. Similarly, LIMK2's peptide substrate specificity has not been analyzed. This is particularly important for LIMK2, a kinase almost three decades old, as only a handful of its substrates are known to date. As a result, most of LIMK2's physiological and pathological roles have been assigned to its regulation of actin dynamics via cofilin. This review focuses on LIMK2's unique catalytic mechanism, substrate specificity and its upstream regulators at transcriptional, post-transcriptional and post-translational stages. Moreover, emerging studies have unveiled a few tumor suppressors and oncogenes as LIMK2's direct substrates, which in turn have uncovered novel molecular mechanisms by which it plays pleiotropic roles in human physiology and pathologies independent of actin dynamics.


Assuntos
Actinas , Proteínas Serina-Treonina Quinases , Humanos , Actinas/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/fisiologia , Fatores de Despolimerização de Actina/metabolismo , Processamento de Proteína Pós-Traducional , Quinases Lim/genética
3.
Trends Neurosci ; 46(6): 411-412, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36959051

RESUMO

In a recent study, Bonnet and colleagues leveraged in silico structure prediction and human genetic data to understand the molecular regulation of the Rac1-activating guanie nucleotide exchange factor (Rac1-GEF) domain of Trio. Their work sheds new light on the role of Trio during axon guidance and explores the mechanism by which Trio GEF function is regulated in health and dysregulated in disease.


Assuntos
Orientação de Axônios , Fatores de Troca do Nucleotídeo Guanina , Proteínas Serina-Treonina Quinases , Proteínas rac1 de Ligação ao GTP , Humanos , Mutação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Orientação de Axônios/genética , Modelos Genéticos , Proteínas rac1 de Ligação ao GTP/química , Domínios Proteicos
4.
Wei Sheng Yan Jiu ; 52(1): 109-114, 2023 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-36750337

RESUMO

OBJECTIVE: To investigate the role of inositol-requiring enzyme 1(IRE1) in autophagy of human gastric cancer cells induced by vitamin E succinate(VES). METHODS: Human gastric cancer SGC-7901 cells were cultured in vitro and divided into solvent control group(0.1% ethanol absolute), different doses(5, 10, 15 and 20 µg/mL) VES group, 4µ8C group, and VES + 4µ8C group. The endoplasmic reticulum stress-related molecules glucose regulated protein 78(GRP78) and C/EBP homologous protein(CHOP), autophagy marker microtubule associated Protein1 light chain 3(LC3), Beclin-1, unfolded protein response branching pathway Inositol-requiring enzyme 1(IRE1), X box-binding protein 1(XBP1), c-Jun n-terminal kinase(JNK) and p-JNK were detected by Western blot in the solvent control group and different doses of VES group. IRE1 was inhibited by 4µ8C. The expressions of IRE1, XBP1, JNK, p-JNK, GRP78 and CHOP were detected by Western blot, and the expressions of LC3 and Beclin-1 were detected. RESULTS: The expression of GRP78(1.16±0.06) and CHOP(1.36±0.11) in 20 µg/mL VES group were significantly higher than those in solvent control group GRP78(0.36±0.10) and CHOP(0.48±0.05)(P<0.001). The expression of Beclin-1(1.09±0.20) and LC3-Ⅱ/LC3-Ⅰ(1.29±0.03) in 20 µg/mL VES group were significantly higher than those in solvent control group(0.27±0.07) and LC3-Ⅱ/LC3-Ⅰ(0.43±0.06)(P<0.001). The expression levels of IRE1(1.07±0.20), XBP1(1.33±0.07) and p-JNK/JNK(1.19±0.31) in 20 µg/mL VES group were significantly higher than those in the solvent control group(P<0.01). After IRE1 is inhibited: The expression level of IRE1(0.63±0.27), XBP1(0.74±0.09), p-JNK/JNK(0.35±0.04), GRP78(0.66±0.02), CHOP(0.51±0.02), LC3-Ⅱ/LC3-Ⅰ(0.72±0.01), Beclin-1(0.70±0.15) was significantly lower than that of VES group(P<0.05). CONCLUSION: VES may participate in the regulation of autophagy in gastric cancer cells by upregulating IRE1 pathway.


Assuntos
Neoplasias Gástricas , alfa-Tocoferol , Humanos , Chaperona BiP do Retículo Endoplasmático , Proteína Beclina-1 , Apoptose , Proteínas Serina-Treonina Quinases/fisiologia , Estresse do Retículo Endoplasmático , Autofagia , Inositol
5.
Neurosci Res ; 190: 17-28, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36403790

RESUMO

Cerebral ischemia is the primary cause of morbidity and mortality worldwide due to the perturbations in the blood supply to the brain. The brain triggers a cascade of complex metabolic and cellular defects in response to ischemic stress. However, due to the disease heterogeneity and complexity, ischemic injury's metabolic and cellular pathologies remain elusive, and the link between various pathological mechanisms is difficult to determine. Efforts to develop effective treatments for these disorders have yielded limited efficacy, with no proper cure available to date. Recent clinical and experimental research indicates that several neuronal diseases commonly coexist with metabolic dysfunction, which may aggravate neurological symptoms. As a result, it stands to a reason that metabolic hormones could be a potential therapeutic target for major NDDs. Moreover, fasting signals also influence the circadian clock, as AMPK phosphorylates and promotes the degradation of the photo-sensing receptor (cryptochrome). Here, the interplay of AMPK signaling between metabolic regulation and neuronal death and its role for pathogenesis and therapeutics has been studied. We have also highlighted a significant signaling pathway, i.e., the adenosine monophosphate-activated protein kinase (AMPK) involved in the relationship between the metabolism and ischemia, which could be used as a target for future studies therapeutics, and review some of the clinical progress in this area.


Assuntos
Proteínas Quinases Ativadas por AMP , Lesões Encefálicas , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Monofosfato de Adenosina/metabolismo , Isquemia , Transdução de Sinais/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia
6.
Acta Physiologica Sinica ; (6): 451-464, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-981020

RESUMO

Serum and glucocorticoid-regulated kinase 1 (SGK1) plays an important role in the physiological processes of hormone release, neuronal excitation and cell proliferation. SGK1 also participates in the pathophysiological processes of inflammation and apoptosis in the central nervous system (CNS). Increasing evidence demonstrates that SGK1 may serve as a target of the intervention of neurodegenerative diseases. In this article, we summarize the recent progress on the role and molecular mechanisms of SGK1 in the regulation of the function of the CNS. We also discuss the potential of newly discovered SGK1 inhibitors in the treatment of CNS diseases.


Assuntos
Humanos , Proliferação de Células , Doenças do Sistema Nervoso Central/tratamento farmacológico , Inflamação , Proteínas Serina-Treonina Quinases/fisiologia
7.
Eur J Immunol ; 52(7): 1069-1076, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35419836

RESUMO

The intracellular mechanisms safeguarding DC function are of biomedical interest in several immune-related diseases. Type 1 conventional DCs (cDC1s) are prominent targets of immunotherapy typified by constitutive activation of the unfolded protein response (UPR) sensor IRE1. Through its RNase domain, IRE1 regulates key processes in cDC1s including survival, ER architecture and function. However, most evidence linking IRE1 RNase with cDC1 biology emerges from mouse studies and it is currently unknown whether human cDC1s also activate the enzyme to preserve cellular homeostasis. In this work, we report that human cDC1s constitutively activate IRE1 RNase in steady state, which is evidenced by marked expression of IRE1, XBP1s, and target genes, and low levels of mRNA substrates of the IRE1 RNase domain. On a functional level, pharmacological inhibition of the IRE1 RNase domain curtailed IL-12 and TNF production by cDC1s upon stimulation with TLR agonists. Altogether, this work demonstrates that activation of the IRE1/XBP1s axis is a conserved feature of cDC1s across species and suggests that the UPR sensor may also play a relevant role in the biology of the human lineage.


Assuntos
Células Dendríticas , Endorribonucleases , Proteínas Serina-Treonina Quinases , Resposta a Proteínas não Dobradas , Proteína 1 de Ligação a X-Box , Células Dendríticas/imunologia , Endorribonucleases/fisiologia , Humanos , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Serina-Treonina Quinases/fisiologia , Proteostase , Transdução de Sinais , Proteína 1 de Ligação a X-Box/fisiologia
8.
Cell Rep ; 38(2): 110233, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35021089

RESUMO

Acute myeloid leukemia (AML) cells rely on phospho-signaling pathways to gain unlimited proliferation potential. Here, we use domain-focused CRISPR screening and identify the nuclear phosphatase SCP4 as a dependency in AML, yet this enzyme is dispensable in normal hematopoietic progenitor cells. Using CRISPR exon scanning and gene complementation assays, we show that the catalytic function of SCP4 is essential in AML. Through mass spectrometry analysis of affinity-purified complexes, we identify the kinase paralogs STK35 and PDIK1L as binding partners and substrates of the SCP4 phosphatase domain. We show that STK35 and PDIK1L function catalytically and redundantly in the same pathway as SCP4 to maintain AML proliferation and to support amino acid biosynthesis and transport. We provide evidence that SCP4 regulates STK35/PDIK1L through two distinct mechanisms: catalytic removal of inhibitory phosphorylation and by promoting kinase stability. Our findings reveal a phosphatase-kinase signaling complex that supports the pathogenesis of AML.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Transdução de Sinais/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/fisiopatologia , Fosfoproteínas Fosfatases/fisiologia , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia
9.
Kaohsiung J Med Sci ; 38(2): 97-107, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34708547

RESUMO

Melanoma is a malignancy derived from melanocytes and is associated with high mortality rates worldwide. Long noncoding RNAs (lncRNAs) have been confirmed to be pivotal regulators in multiple types of cancer. Many lncRNAs are aberrantly expressed in tumors and perform vital functions in cancer progression. Nevertheless, the biological role of lncRNA bladder cancer-associated transcript 1 (BLACAT1) in melanoma progression remains unexplored. In this study, the collected data showed that BLACAT1 was highly expressed in melanoma. Mechanistically, miR-374b-5p bound to BLACAT1, and U2-associated factor homology motif kinase 1 (UHMK1) was a downstream target of miR-374b-5p. BLACAT1 upregulated UHMK1 expression by acting as a competing endogenous RNA for miR-374-5b. BLACAT1 deficiency resulted in the upregulation of miR-374b-5p expression and the downregulation of UHMK1 expression in melanoma cells. Moreover, BLACAT1 activated PI3K and AKT signaling by upregulating UHMK1 expression, as shown by western blotting analyses. Functionally, UHMK1 overexpression or miR-374b-5p knockdown reversed the suppressive effect of BLACAT1 depletion on melanoma cell proliferation and invasion. In conclusion, BLACAT1 promotes melanoma cell proliferation and invasion by upregulating UHMK1 expression via miR-374b-5p to activate the PI3K/AKT pathway. These results might provide promising insight into the investigation of prognostic biomarkers of melanoma.


Assuntos
Movimento Celular , Proliferação de Células , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Melanoma/patologia , MicroRNAs/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , RNA Longo não Codificante/fisiologia , Neoplasias da Bexiga Urinária/patologia , Humanos , Invasividade Neoplásica , Células Tumorais Cultivadas
10.
Clin Immunol ; 234: 108895, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34826606

RESUMO

PURPOSE: Serum/glucocorticoid-regulated kinase 1 (SGK1) has been identified as a crucial regulator in fibrotic disorders. Herein, we explored SGK1 role in tissue remodeling of chronic rhinosinusitis (CRS). METHODS: Lentivirus was employed to generate an SGK1-overexpressing human bronchial epithelial cell (16HBE) line. To screen SGK1 downstream genes, RNA sequencing was performed on SGK1-overexpressing and control cell lines. To determine protein and gene expression levels, immunohistochemistry, western blotting, and quantitative real-time polymerase chain reaction were employed. Correlation analysis was performed using mRNA expression levels of SGK1, transforming growth factor ß1 (TGF-ß1), and connective tissue growth factor (CTGF) derived from CRS mucosal tissue and GEO database. Gene set enrichment analysis was conducted using gene sets from Molecular Signatures Database. The severity of symptoms in CRS patients was assessed using the 22-Item Sinonasal Outcome Test. RESULTS: SGK1 overexpression significantly increased the expression of connective tissue growth factor (CTGF) in 16HBE cells (P < 0.01). Consistently, CTGF protein level was considerably greater in mucosal tissue of CRS without nasal polyps (CRSsNP) than in CRS with nasal polyps (CRSwNP) (P < 0.05) or in control subjects (P < 0.01). TGF-ß1 protein level was higher in mucosal tissue of CRSsNP patients than in CRSwNP patients (P < 0.001) or in the control group (P < 0.01). mRNA levels of SGK1 and CTGF (P < 0.05, r = 0.668; P = 0.001, r = 0.630), TGF-ß1 and CTGF (P < 0.05, r = 0.560; P < 0.05, r = 0.420), as well as SGK1 and TGF-ß1(P < 0.05, r = 0.612; P < 0.05, r = 0.524) were significantly correlated in CRS mucosal tissue and GSE36830 dataset, respectively. TGF-ß1-induced upregulated genes were significantly enriched in SGK1 overexpression group. In vitro assays, TGF-ß1 promoted SGK1 and CTGF expression in a concentration- and time-dependent manner. Administrating an SGK1 inhibitor, GSK650394, significantly inhibited TGF-ß1-induced CTGF expression in 16HBE and dispersed primary nasal polyp cells. CONCLUSIONS: TGF-ß1 stimulation significantly increases SGK1 and CTGF expression. By regulating TGF-ß1-CTGF pathway, SGK1 may participate in tissue remodeling in the pathological mechanism of CRS.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/fisiologia , Proteínas Imediatamente Precoces/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Rinite/etiologia , Sinusite/etiologia , Fator de Crescimento Transformador beta1/fisiologia , Adulto , Células Cultivadas , Doença Crônica , Fator de Crescimento do Tecido Conjuntivo/análise , Fator de Crescimento do Tecido Conjuntivo/genética , Feminino , Humanos , Proteínas Imediatamente Precoces/genética , Masculino , Pessoa de Meia-Idade , Proteínas Serina-Treonina Quinases/genética , Rinite/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais/fisiologia , Sinusite/metabolismo , Fator de Crescimento Transformador beta1/análise , Fator de Crescimento Transformador beta1/genética
11.
PLoS Biol ; 19(12): e3001496, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34928937

RESUMO

Magnesium is essential for cellular life, but how it is homeostatically controlled still remains poorly understood. Here, we report that members of CNNM family, which have been controversially implicated in both cellular Mg2+ influx and efflux, selectively bind to the TRPM7 channel to stimulate divalent cation entry into cells. Coexpression of CNNMs with the channel markedly increased uptake of divalent cations, which is prevented by an inactivating mutation to the channel's pore. Knockout (KO) of TRPM7 in cells or application of the TRPM7 channel inhibitor NS8593 also interfered with CNNM-stimulated divalent cation uptake. Conversely, KO of CNNM3 and CNNM4 in HEK-293 cells significantly reduced TRPM7-mediated divalent cation entry, without affecting TRPM7 protein expression or its cell surface levels. Furthermore, we found that cellular overexpression of phosphatases of regenerating liver (PRLs), known CNNMs binding partners, stimulated TRPM7-dependent divalent cation entry and that CNNMs were required for this activity. Whole-cell electrophysiological recordings demonstrated that deletion of CNNM3 and CNNM4 from HEK-293 cells interfered with heterologously expressed and native TRPM7 channel function. We conclude that CNNMs employ the TRPM7 channel to mediate divalent cation influx and that CNNMs also possess separate TRPM7-independent Mg2+ efflux activities that contribute to CNNMs' control of cellular Mg2+ homeostasis.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Ciclinas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Canais de Cátion TRPM/metabolismo , Proteínas de Transporte de Cátions/fisiologia , Cátions Bivalentes/metabolismo , Linhagem Celular Tumoral , Ciclinas/fisiologia , Células HEK293 , Humanos , Magnésio/metabolismo , Técnicas de Patch-Clamp , Proteínas Serina-Treonina Quinases/fisiologia , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/fisiologia
12.
J Clin Invest ; 131(22)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34779419

RESUMO

Genetic variants near the TRIB1 gene are highly significantly associated with plasma lipid traits and coronary artery disease. While TRIB1 is likely causal of these associations, the molecular mechanisms are not well understood. Here we sought to investigate how TRIB1 influences low density lipoprotein cholesterol (LDL-C) levels in mice. Hepatocyte-specific deletion of Trib1 (Trib1Δhep) in mice increased plasma cholesterol and apoB and slowed the catabolism of LDL-apoB due to decreased levels of LDL receptor (LDLR) mRNA and protein. Simultaneous deletion of the transcription factor CCAAT/enhancer-binding protein alpha (CEBPα) with TRIB1 eliminated the effects of TRIB1 on hepatic LDLR regulation and LDL catabolism. Using RNA-seq, we found that activating transcription factor 3 (Atf3) was highly upregulated in the livers of Trib1Δhep but not Trib1Δhep CebpaΔhep mice. ATF3 has been shown to directly bind to the CEBPα protein, and to repress the expression of LDLR by binding its promoter. Blunting the increase of ATF3 in Trib1Δhep mice reduced the levels of plasma cholesterol and partially attenuated the effects on LDLR. Based on these data, we conclude that deletion of Trib1 leads to a posttranslational increase in CEBPα, which increases ATF3 levels, thereby contributing to the downregulation of LDLR and increased plasma LDL-C.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/fisiologia , Hepatócitos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Lipoproteínas LDL/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Receptores de LDL/análise , Fator 3 Ativador da Transcrição/fisiologia , Animais , Apolipoproteínas B/metabolismo , Feminino , Humanos , Lipídeos/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/fisiologia
13.
FASEB J ; 35(11): e21990, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34665898

RESUMO

Eukaryotic initiation factor 2A (eIF2A) is a 65 kDa protein that functions in minor initiation pathways, which affect the translation of only a subset of messenger ribonucleic acid (mRNAs), such as internal ribosome entry site (IRES)-containing mRNAs and/or mRNAs harboring upstream near cognate/non-AUG start codons. These non-canonical initiation events are important for regulation of protein synthesis during cellular development and/or the integrated stress response. Selective eIF2A knockdown in cellular systems significantly inhibits translation of such mRNAs, which rely on alternative initiation mechanisms for their translation. However, there exists a gap in our understanding of how eIF2A functions in mammalian systems in vivo (on the organismal level) and ex vivo (in cells). Here, using an eIF2A-knockout (KO) mouse model, we present evidence implicating eIF2A in the biology of aging, metabolic syndrome and central tolerance. We discovered that eIF2A-KO mice have reduced life span and that eIF2A plays an important role in maintenance of lipid homeostasis, the control of glucose tolerance, insulin resistance and also reduces the abundance of B lymphocytes and dendritic cells in the thymic medulla of mice. We also show the eIF2A KO affects male and female mice differently, suggesting that eIF2A may affect sex-specific pathways. Interestingly, our experiments involving pharmacological induction of endoplasmic reticulum (ER) stress with tunicamycin did not reveal any substantial difference between the response to ER stress in eIF2A-KO and wild-type mice. The identification of eIF2A function in the development of metabolic syndrome bears promise for the further identification of specific eIF2A targets responsible for these changes.


Assuntos
Metabolismo dos Lipídeos , Longevidade , Síndrome Metabólica/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores Sexuais
14.
Cancer Lett ; 523: 43-56, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34601021

RESUMO

Membrane vesicles, including exosomes and microparticles (MPs), serve to package and transfer the cellular cargo during inter/extracellular communication, which is of great interest in cancer development, especially in the dissemination of signal transduction-associated traits from donor cells to recipient cells. Although increasing evidence suggests that microparticles (MPs) contribute to the development of cancer, their unique characteristics remain to be exploited. Here, we examined the secretion of MPs in tumor tissues from triple-negative breast cancer (TNBC) patients and found that the tumor cells could release MPs loaded with immune checkpoint molecular programmed cell death ligand 1 (PD-L1), especially in patients treated with traditional clinical interventions, such as chemotherapy and radiotherapy. These PD-L1-loading MPs contribute to the suppressive immune microenvironment, eventually resulting in the tumor progression in TNBC. Mechanically, we proved that PD-L1-loading MPs could suppress the activation and function of functional cluster of differentiation CD8+ T cells. Meanwhile, the PD-L1-loading MPs could mediate the differentiation of macrophages toward the immune-suppressive M2 phenotype via the activation of the TANK-binding kinase 1 (TBK1)/signal transducer and activator of transcription 6 (STAT6) signal and suppression of the serine-threonine kinase (AKT)/mammalian target of rapamycin (mTOR) signal. Given the increasing MP production induced by traditional clinical interventions, we further combined chemotherapy with the PD-L1 inhibitor atezolizumab (ATZ) to efficiently abrogate the immunosuppression caused by the PD-L1-loading MPs. Therefore, our study unveils the mechanism by which tumor cells systemically evade immune surveillance by releasing the PD-L1-loading MPs, and provides new insights into clinical TNBC immunotherapy.


Assuntos
Antígeno B7-H1/fisiologia , Micropartículas Derivadas de Células/fisiologia , Tolerância Imunológica , Neoplasias de Mama Triplo Negativas/etiologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Serina-Treonina Quinases/fisiologia , Fator de Transcrição STAT6/fisiologia , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/imunologia
15.
Life Sci ; 286: 120075, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34678260

RESUMO

AIMS: Increased proliferation, inflammation, and endothelial microparticle (EMP) generation in the pulmonary vasculature lead to endothelial dysfunction in pulmonary hypertension (PH). Interestingly, MK2, a downstream of p38MAPK, is a central regulator of inflammation, proliferation, and EMP generation in cardiovascular diseases. However, the role of MK2 in pulmonary endothelial dysfunction remains unexplored. MAIN METHODS: The Human Pulmonary Artery Endothelial cells (HPAECs) were exposed to hypoxia (1% O2) for 72 h, and MK2 inhibition was achieved by siRNA treatment. Western blotting, qualitative RT-PCR, immunocytochemistry, flow cytometry and enzyme-linked immunoassays were conducted to study pathological alterations and molecular mechanisms. Neoangiogenesis was studied using cell migration and tubule formation assays. For in vivo study, Male Sprague Dawley rats and MK2 knock-out mice with littermate control were treated with monocrotaline (MCT) 60 mg/kg and 600 mg/kg, respectively (s.c. once in rat and weekly in mice) to induce PH. MMI-0100 (40 µg/kg, i.p. daily for 35 days), was administered in rats to inhibit MK2. KEY FINDINGS: MK2 inhibition significantly decreased inflammation, cell proliferation, apoptosis resistance, and improved mitochondrial functions in hypoxic HPAECs. Hypoxia promoted cell migration, VEGF expression, and angiogenesis in HPAECs, which were also reversed by MK2 siRNA. MK2 inhibition decreased EMP generation and increased the expression of p-eNOS in hypoxic HPAECs, a marker of endothelial function. Furthermore, MK2 deficiency and inhibition both reduced the EMP generation in mice and rats, respectively. SIGNIFICANCE: These findings proved that MK2 is involved in endothelial dysfunction, and its inhibition may be beneficial for endothelial function in PH.


Assuntos
Hipertensão Pulmonar/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Apoptose/fisiologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Endoteliais/metabolismo , Humanos , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica/patologia , Proteínas Serina-Treonina Quinases/fisiologia , Artéria Pulmonar/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
J Clin Invest ; 131(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34651584

RESUMO

CDKL5 deficiency disorder (CDD) is an early onset, neurodevelopmental syndrome associated with pathogenic variants in the X-linked gene encoding cyclin-dependent kinase-like 5 (CDKL5). CDKL5 has been implicated in neuronal synapse maturation, yet its postdevelopmental necessity and the reversibility of CDD-associated impairments remain unknown. We temporally manipulated endogenous Cdkl5 expression in male mice and found that postdevelopmental loss of CDKL5 disrupts numerous behavioral domains, hippocampal circuit communication, and dendritic spine morphology, demonstrating an indispensable role for CDKL5 in the adult brain. Accordingly, restoration of Cdkl5 after the early stages of brain development using a conditional rescue mouse model ameliorated CDD-related behavioral impairments and aberrant NMDA receptor signaling. These findings highlight the requirement of CDKL5 beyond early development, underscore the potential for disease reversal in CDD, and suggest that a broad therapeutic time window exists for potential treatment of CDD-related deficits.


Assuntos
Síndromes Epilépticas/psicologia , Proteínas Serina-Treonina Quinases/fisiologia , Espasmos Infantis/psicologia , Animais , Dendritos/patologia , Potenciais Evocados/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de N-Metil-D-Aspartato/fisiologia
17.
FASEB J ; 35(11): e22001, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34674320

RESUMO

The pre-mRNA processing factor 4 kinase (PRP4K, also known as PRPF4B) is an essential gene. However, reduced PRP4K expression is associated with aggressive breast and ovarian cancer phenotypes including taxane therapy resistance, increased cell migration and invasion in vitro, and cancer metastasis in mice. These results are consistent with PRP4K being a haploinsufficient tumor suppressor. Increased cell migration and invasion is associated with epithelial-to-mesenchymal transition (EMT), but how reduced PRP4K levels affect normal epithelial cell migration or EMT has not been studied. Depletion of PRP4K by small hairpin RNA (shRNA) in non-transformed mammary epithelial cell lines (MCF10A, HMLE) reduced or had no effect on 2D migration in the scratch assay but resulted in greater invasive potential in 3D transwell assays. Depletion of PRP4K in mesenchymal triple-negative breast cancer cells (MDA-MB-231) resulted in both enhanced 2D migration and 3D invasion, with 3D invasion correlated with higher fibronectin levels in both MDA-MB-231 and MCF10A cells and without changes in E-cadherin. Induction of EMT in MCF10A cells, by treatment with WNT-5a and TGF-ß1, or depletion of eukaryotic translation initiation factor 3e (eIF3e) by shRNA, resulted in significantly reduced PRP4K expression. Mechanistically, induction of EMT by WNT-5a/TGF-ß1 reduced PRP4K transcript levels, whereas eIF3e depletion led to reduced PRP4K translation. Finally, reduced PRP4K levels after eIF3e depletion correlated with increased YAP activity and nuclear localization, both of which are reversed by overexpression of exogenous PRP4K. Thus, PRP4K is a haploinsufficient tumor suppressor negatively regulated by EMT, that when depleted in normal mammary cells can increase cell invasion without inducing full EMT.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias Ovarianas , Proteínas Serina-Treonina Quinases/fisiologia , Ribonucleoproteína Nuclear Pequena U4-U6/fisiologia , Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Movimento Celular , Feminino , Humanos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
18.
Hum Cell ; 34(6): 1878-1887, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34515990

RESUMO

Emerging evidence suggests that long non-coding RNA (lncRNA) is closely associated with numerous human diseases, including cancer. However, the functional relevance of lncRNA in human laryngeal squamous cell carcinoma (LSCC) is largely unknown. In the current study, we described CCAT2, a previously unappreciated oncogenic lncRNA in LSCC. CCAT2 was significantly upregulated in human LSCC tissue and serum samples, associated with larger tumor volume, higher clinical stage, and poorer differentiation status. Lentivirus-mediated CCAT2 knockdown notably repressed the cell viability, colony formation, and DNA synthesis rate of LSCC. Screening of transcription factors revealed that YAP/TEAD activity was affected by CCAT2 in LSCC cells. Further, CCAT2 directly binds to YAP protein and blocks the phosphorylation of YAP induced by LATS1, resulting in the nuclear translocation of YAP and the activation of YAP oncogenic targets, such as CTGF, CYR61 and AMOTL2. Importantly, we also confirmed the regulation of CCAT2 on YAP activity in vivo based on nude mice model. Altogether, we identified a novel lncRNA that controls YAP nucleocytoplasmic shuttling and promotes LSCC cell proliferation. Given the importance of YAP in tumorigenesis and progression, our results provide insights to intervene LSCC by targeting the CCAT2/YAP axis.


Assuntos
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/patologia , RNA Longo não Codificante/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Carcinoma de Células Escamosas/terapia , Proliferação de Células/genética , Sobrevivência Celular/genética , DNA de Neoplasias/metabolismo , Modelos Animais de Doenças , Humanos , Neoplasias Laríngeas/terapia , Camundongos Nus , Terapia de Alvo Molecular , Fosforilação/genética , Ligação Proteica/genética , Proteínas Serina-Treonina Quinases/fisiologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células Tumorais Cultivadas , Regulação para Cima/genética
19.
J Clin Pathol ; 74(11): 681-685, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34479873

RESUMO

STK11 encodes for the protein liver kinase B1, a serine/threonine kinase which is involved in a number of physiological processes including regulation of cellular metabolism, cell polarity and the DNA damage response. It acts as a tumour suppressor via multiple mechanisms, most classically through AMP-activated protein kinase-mediated inhibition of the mammalian target of rapamycin signalling pathway. Germline loss-of-function mutations in STK11 give rise to Peutz-Jeghers syndrome, which is associated with hamartomatous polyps of the gastrointestinal tract, mucocutaneous pigmentation and a substantially increased lifetime risk of many cancers. In the sporadic setting, STK11 mutations are commonly seen in a subset of adenocarcinomas of the lung in addition to a number of other tumours occurring at various sites. Mutations in STK11 have been associated with worse prognoses across a range of malignancies and may be a predictor of poor response to immunotherapy in a subset of lung cancers, though further studies are needed before the presence of STK11 mutations can be implemented as a routine clinical biomarker.


Assuntos
Mutação , Neoplasias/genética , Síndrome de Peutz-Jeghers/genética , Proteínas Serina-Treonina Quinases , Quinases Proteína-Quinases Ativadas por AMP , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...